Comparison of model selection criteria in graphical LASSO

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Lasso for Gaussian Graphical Model Selection

Inspired by the success of the Lasso for regression analysis (Tibshirani, 1996), it seems attractive to estimate the graph of a multivariate normal distribution by `1-norm penalised likelihood maximisation. The objective function is convex and the graph estimator can thus be computed efficiently, even for very large graphs. However, we show in this note that the resulting estimator is not consi...

متن کامل

On Model Selection Consistency of Lasso On Model Selection Consistency of Lasso

Sparsity or parsimony of statistical models is crucial for their proper interpretations, as in sciences and social sciences. Model selection is a commonly used method to find such models, but usually involves a computationally heavy combinatorial search. Lasso (Tibshirani, 1996) is now being used as a computationally feasible alternative to model selection. Therefore it is important to study La...

متن کامل

Fused Multiple Graphical Lasso

In this paper, we consider the problem of estimating multiple graphical models simultaneously using the fused lasso penalty, which encourages adjacent graphs to share similar structures. A motivating example is the analysis of brain networks of Alzheimer’s disease using neuroimaging data. Specifically, we may wish to estimate a brain network for the normal controls (NC), a brain network for the...

متن کامل

Pathway Graphical Lasso

Graphical models provide a rich framework for summarizing the dependencies among variables. The graphical lasso approach attempts to learn the structure of a Gaussian graphical model (GGM) by maximizing the log likelihood of the data, subject to an l1 penalty on the elements of the inverse co-variance matrix. Most algorithms for solving the graphical lasso problem do not scale to a very large n...

متن کامل

On Model Selection Consistency of Lasso

Sparsity or parsimony of statistical models is crucial for their proper interpretations, as in sciences and social sciences. Model selection is a commonly used method to find such models, but usually involves a computationally heavy combinatorial search. Lasso (Tibshirani, 1996) is now being used as a computationally feasible alternative to model selection. Therefore it is important to study La...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Data and Information Science Society

سال: 2014

ISSN: 1598-9402

DOI: 10.7465/jkdi.2014.25.4.881